

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

Applications of Satellite NO₂ Data

Dan Goldberg, Ph.D.

George Washington University Argonne National Laboratory Washington, DC

> Air & Waste Management: Regional Air Quality Symposium February 13th, 2020

Co-authors:

George Washington University: Susan Anenberg, Arash Mohegh

Argonne National Lab: Zifeng Lu, David Streets

Other colleagues involved: Benjamin de Foy, Debora Griffin, Chris McLinden, Lok Lamsal, Nick Krotkov, Fei Liu, Bryan Duncan, Henk Eskes

POLAR-ORBITING SATELLITES VS. GEOSTATIONARY SATELLITES

Polar-orbiting, or low-earth-orbiting, satellites have global coverage *but* only one snapshot (sometimes fewer) per day.

Geostationary satellites have partial global coverage, but many snapshots (100x, 1000x) per day. Coming in 2022!

Animation from UCAR COMET

All current air quality monitoring satellites are these.

Argonne 🛆

NAMES OF THE SATELLITES

- OMI = Ozone Monitoring Instrument (launched Summer 2004)
- TROPOMI = Tropospheric Monitoring Instrument (launched Fall 2017)

SINGLE DAY OF NO₂ FROM TROPOMI & OMI

Units are molecules per cm²; Red is high concentrations, Blue is low concentrations

Milken Institute School of Public Health The george washington University

ENTIRE RECORD OF TROPOMI NO₂ OVER THE US

TROPOMI NO₂ AVG FOR BALTIMORE & DC (MAY – SEPT ONLY)

Highest value is in SE Federal Hill, Baltimore, MD

Milken Institute School of Public Health The george washington university

TROPOMI NO2 AVG FOR DC (MAY - SEPT ONLY)

Highest value is at East Potomac Golf Course (downwind of Reagan)

1. Investigate trends of NO₂ and its emissions sources

OMI NO₂ 2005

Milken II of Public Health THE GEORGE WASHINGTON UNIVERSITY

1. Investigate trends of NO₂ and its emissions sources

OMI NO₂ 2005

Milken II of Public Health The george washington university

2. Investigate anthropogenic and "natural" cycles of NO₂

- NO₂ highest on weekdays; lower on Saturdays; lowest on Sundays
- Some interesting unexpected city-specific trends

2. Investigate anthropogenic and "natural" cycles of NO₂

- NO₂ larger during winter (longer NO₂ lifetime) even though emissions are likely larger during summer
- NO_2 concentrations $\neq NO_x$ emissions

Milken Institute School of Public Health THE GEORGE WASHINGTON UNIVERSITY In many cases, NO₂ concentrations ~ NO_x emissions

3. Derive NO_x emissions rates (when combined with wind data)

Advantages of satellite-based "top-down" estimates:

- Completely independent of EPA "bottom-up" estimates
- Can provide timely estimates before EPA estimates are released

Disadvantages:

• Satellite estimates are aggregated across an entire urban area

Millen In fitthere lare discrepancies, it's difficult to ascertain which source is responsible) of Public Health THE GEORGE WASHINGTON UNIVERSITY

Goldberg et al., 2019a

3. Derive NO_x emissions rates (when combined with wind data)

Location	Satellite-derived NOx emissions rate	Stack-measured NOx emissions rate
Four Corners Power Plant Complex, NM	1.04 ± 0.29 Mg/hr	1.18 Mg/hr
Colstrip Power Plant, MT	1.17 ± 0.31 Mg/hr	1.21 Mg/hr

Location	Satellite-derived NOx emissions rate	Gov't-reported NOx emissions rate
Chicago, IL	19 ± 5 Mg/hr	18 Mg/hr
New York City, NY	18±5 Mg/hr	22 Mg/hr
Toronto, ON	14 ± 5 Mg/hr	11 Mg/hr

Goldberg et al., 2019a

Location	Satellite-derived	Gov't-reported
Seoul, Korea	55 ± 23 Mg/hr	26 Mg/hr

Goldberg et al., 2019b Argonne

3. Use it as a tool in air quality forecasting

JULY 2019 AVG

MONDAY JULY 1, 2019 ONLY

Column NO₂ is 2 - 5 times larger than "average" during the worst ozone AQ days!

Milken Institute School of Public Health The george washington university

3. Use it as a tool in air quality forecasting

JULY 2019 AVG

TUESDAY JULY 2, 2019 ONLY

Column NO₂ is 2 - 5 times larger than "average" during the worst ozone AQ days!

5. Infer CO_2 emission rates (NO₂ is co-emitted with CO_2)

of Public Health THE GEORGE WASHINGTON UNIVERSITY

6. Use as an input to estimate surface-level concentrations

THE GEORGE WASHINGTON UNIVERSITY

COMING SOON: TEMPO & GEMS

Image: TEMPO Science Team

Characteristics:

- o Geostationary orbit
 - o TEMPO: North America
 - o GEMS: East Asia
- Hourly resolution that can show diurnal variability of emissions!
- Spatial resolution:
 - o TEMPO: 2 km x 4.5 km
 - GEMS: 7 km x 8 km

CONCLUSIONS

Satellite data can be useful in many different ways.
Some examples discussed:

- 1. To estimate trends of pollution anywhere across the globe
- 2. Investigate seasonal, monthly, and weekly cycles of pollution
- 3. To derive emissions rates from cities and power plants without the use of a global model simulation
- 4. To help forecast air quality on a day-to-day basis
- 5. To account for GHG emissions, since NOx is co-emitted with CO_2
- 6. To use as an input for estimation of surface-level concentrations

LET'S CONNECT ON TWITTER! @DGOLDBERGAQ

OR EMAIL: DGOLDBERG@GWU.EDU

THANK YOU!

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY